EXPONENTIAL FORMULAE FOR SEMI-GROUP OF OPERATORS IN TERMS OF THE RESOLVENT

BY

Z. DITZIAN

ABSTRACT

Rate of convergence in terms of the modulus of continuity of either $T(t)$ for of $T(t)$ *Af*, where $T(t)$ is a strongly continuous semi-group of operators, is obtained for Phillips' and for Widder's exponential formula.

1. Introduction

In this paper $T(t)$ will be a strongly continuous semi-group of operators from a Banach space $\mathscr B$ into itself that is; a $\mathscr C_0$ semi-group; A will be its infinitesimal generator; and $R(\lambda; A) = (\lambda I - A)^{-1}$ the resolvent of A. Recalling that

(1.1)
$$
R(\lambda, A)f = \int_0^\infty e^{-\lambda t} T(t) f dt \qquad \lambda > \gamma_0
$$

[6, p. 352], an inversion formula for the Laplace transform will express $T(t)f$ in terms of $R(\lambda; A)f$, in other words, will yield exponential formulae for $T(t)$.

It was shown by Phillips $\lceil 8 \rceil$ that

(1.2)
$$
\lim_{\lambda \to \infty} e^{-\lambda t} \sum_{k=0}^{\infty} \frac{(\lambda^2 t)^k}{k!} (R(\lambda; A))^k f \to T(t) f
$$

for all $f \in \mathcal{B}$ uniformly in $t \in [0, L]$. Also, following Widder's inversion formula [9, Ch. VII], it was proved that for $f \in \mathcal{B}$ (see [6, p. 352])

(1.3)
$$
\lim_{k \to \infty} \left(\frac{k}{t} R\left(\frac{k}{t}; A\right) \right)^k f \to T(t) f
$$

uniformly in $[0, L]$.

Received October 23, 1970 and in revised form December 13, 1970

We shall be interested in the rate of convergence of (1.2) and (1.3) in terms of the modulus of continuity in [0, L], $w_i(\delta; T(\cdot) f)$ defined by

$$
(1.4) \qquad w_L(\delta; T(\cdot) = \sup\{\|T(t_1)f - T(t_2)f\|; |t_1 - t_2| \le \delta, 0 \le t_i \le L\}.
$$

The rate of convergence of Hille's first and second exponential formulae [6, p. 354] in terms of (1.4) were investigated by Hsu $[7]$, Butzer and Berens $[1]$ and the author [2], [3]. The rate of convergence obtained in this paper is $Kw_L(\lambda^{-\frac{1}{2}}; T(\cdot)f)$ and $K_1w_L(k^{-\frac{1}{2}}; T(\cdot)f)$ for some constants K and K_1 for (1.2) and (1.3) respectively. It will be shown that considering only $w_L(\delta; T(\cdot) f)$ the estimates for Widder's and Phillip's exponential formulae are up to a constant best possible, since $k^{-\frac{1}{2}}$ (or $\lambda^{-\frac{1}{2}}$) cannot be replaced by a function of k (or λ) tending faster to zero. However, when $d/dt(T(t)f)$ is continuous (or $f \in \mathcal{D}(A)$), a better estimate is possible in terms of the modulus of continuity of $d/dt(T(t))$ $= T(t)Af$; or modulus of continuity of $T(t)Af$. The rate in this case will be $K\lambda^{-\frac{1}{2}}w_L(\lambda^{-\frac{1}{2}}, T(\cdot)Af)$ (for some constant K) for (1.2) (and k replaces λ for (1.3)). We shall show that even if $d^m/dt^m(T(t)f)$ is continuous for all m (that is, $f \in \bigcap_m \mathcal{D}(A^m)$ we cannot improve on the results obtained by considering only $f \in \mathcal{D}(A).$

2. Preliminary Lemmas

In this section we shall prove some Lemmas which will be essential for the proof of our rate of convergence estimates.

LEMMA 2.1. Let $K(t, \tau; \lambda)$ be the positive measure defined by

(2.1)
$$
K(t, \tau; \lambda) = e^{-\lambda(t+\tau)} \left\{ \sum_{n=1}^{\infty} \frac{(\lambda^2 t)^n \tau^{n-1}}{(n!)^2} + \delta(\tau) \right\},
$$

then for $\lambda > \alpha \geq 0$

$$
(2.2) \int_0^\infty K(t,\tau;\lambda)(t-\tau)^2 e^{\alpha t} d\tau = e^{-\lambda t} \left\{ \frac{2t}{\lambda-\alpha} - \frac{2}{(\lambda-\alpha)^2} \right\}
$$

$$
+ \left\{ t^2 \left[\left(\frac{\lambda}{\lambda-\alpha} \right)^2 - 1 \right]^2 + \frac{2t}{\lambda-\alpha} + \frac{2}{(\lambda-\alpha)^2} \right\} \exp \left[\alpha t + (\alpha^2 t/\lambda - \alpha) \right]
$$

and

(2.3)
$$
\int_0^\infty K(t,\tau;\lambda)(t-\tau)d\tau = \frac{1}{\lambda} + \frac{e^{-\lambda t}}{\lambda}.
$$

PROOF. We shall calculate the integrals $\int_0^{\infty} K(t,\tau;\lambda) \tau^i e^{\alpha \tau} d\tau$ for $i=0,1,2$ and both (2.1) and (2.2) will follow combining them. Fubini's theorem, applicable since $K(t, \tau; \lambda) - e^{-\lambda(t+\tau)} \delta(\tau) \geq 0$, implies for $\lambda > \alpha \geq 0$

$$
(2.4) \quad \int_0^{\infty} K(t,\tau;\lambda)e^{\alpha\tau}d\tau = \sum_{n=1}^{\infty} \frac{\lambda^{2n}t^n e^{-\lambda t}}{(n!)^2} \int_0^{\infty} e^{-(\lambda-\alpha)\tau}t^n d\tau + e^{-\lambda t}
$$

$$
= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\lambda^2 t}{\lambda - \alpha}\right)^n e^{-\lambda t} = \exp\left[\lambda t \left(-1 + \frac{\lambda}{\lambda - \alpha}\right)\right] = \exp\left[\alpha t \left(1 + \frac{\alpha}{\lambda - \alpha}\right)\right];
$$

$$
(2.5) \quad \int_0^{\infty} K(t,\tau;\lambda)\tau e^{\alpha\tau}d\tau = \sum_{n=1}^{\infty} \frac{\lambda^{2n}t^n e^{-\lambda t}(n+1)}{n!(\lambda - \alpha)^{n+1}}
$$

$$
= \left[\left(\frac{\lambda}{\lambda - \alpha}\right)^2 t + \frac{1}{\lambda - \alpha}\right] \exp\left(\alpha t \left(1 + \frac{\alpha}{\lambda - \alpha}\right)\right) - \frac{e^{-\lambda t}}{\lambda - \alpha}
$$

using $\tau \delta(\tau) = 0$; and

$$
(2.6) \int_0^{\infty} K(t,\tau;\lambda)\tau^2 e^{\alpha\tau}d\tau
$$

= $\left\{\frac{\lambda^4}{(\lambda-\alpha)^4}t^2 + \frac{1}{\lambda-\alpha}\left(\frac{\lambda}{\lambda-\alpha}\right)^2 4t + \frac{2}{(\lambda-\alpha)^2}\right\} \exp\left(\alpha t \left(1 + \frac{\alpha}{\lambda-\alpha}\right)\right) - \frac{2e^{-\lambda t}}{(\lambda-\alpha)^2}.$
Q.E.D.

In the particularly useful case $\alpha = 0$ we have as a corollary of Lemma 2.1

$$
(2.7) \qquad \int_0^\infty K(t,\tau;\lambda)(t-\tau)^2 d\tau = \frac{2t}{\lambda} + \frac{2}{\lambda^2} + e^{-\lambda t} \left(\frac{2t}{\lambda} - \frac{2}{\lambda^2}\right).
$$

Also, if λ is large enough we have

COROLLARY 2.1.a. *For* $\lambda \geq \lambda_0(\alpha;L)$ *and* $t \leq L < \infty$

(2.8)
$$
\int_0^\infty K(t,\tau;\lambda)(t-\tau)^2 e^{\alpha \tau} d\tau \leq M \frac{1}{\lambda}
$$

where M depends on λ_0 , α and L.

Our next Lemma will be related to Widder's exponential formula (1.3).

LEMMA 2.2. Let $W(k; t, \tau)$ be given by

(2.9)
$$
W(k;t,\tau) \equiv \frac{1}{k!} \left(\frac{k}{t}\right)^{k+1} e^{-k\tau/t} \tau^k,
$$

then for $k > \alpha t$

Z. DITZIAN

Israel J. Math.,

$$
(2.10) \qquad \int_0^\infty W(k;t,\tau)e^{\alpha\tau}(t-\tau)^2d\tau
$$

= $t^2\bigg(1-\frac{2k+2}{k-\alpha t}+\frac{(k+1)(k+2)}{(k-\alpha t)^2}\bigg)\bigg(1-\frac{\alpha t}{k}\bigg)^{-k-1},$

and

(2.11)
$$
\int_0^\infty W(k;t,\tau)(t-\tau)d\tau = -\frac{t}{k}.
$$

Proof. Following Lemma 2.1, we shall calculate $\int_0^\infty W(k;t,\tau)\tau^i e^{\alpha \tau}d\tau$ for $i = 0, 1, 2$ as follows:

(2.12)
$$
\int_0^{\infty} W(k;t,\tau)e^{\alpha \tau} d\tau = \frac{1}{k!} \left(\frac{k}{t}\right)^{k+1} \int_0^{\infty} e^{-(kt/t) + \alpha \tau} \tau^k d\tau \n= \left(\frac{k}{t}\right)^{k+1} \left(\frac{k}{t} - \alpha\right)^{-k-1} = \left(1 - \frac{\alpha t}{k}\right)^{-k-1};
$$
\n(2.13)
$$
\int_0^{\infty} W(k;t,\tau) \tau e^{\alpha \tau} d\tau = t \left(\frac{k+1}{k-\alpha t}\right) \left(1 - \frac{\alpha t}{k}\right)^{-k-1};
$$

and

(2.14)
$$
\int_0^\infty W(k;t,\tau)\tau^2e^{\alpha\tau}d\tau = t^2\frac{(k+1)(k+2)}{(k-\alpha t)^2}\left(1-\frac{\alpha t}{k}\right)^{-k-1}.
$$

Combining (2.12), (2.13) and (2.14), we obtain (2.7) and (2.8).

The particular case of (2.10) when $\alpha = 0$ will be of use

(2.15)
$$
\int_0^\infty W(k;t,\tau)(t-\tau)^2 d\tau = \left(\frac{1}{k} + \frac{2}{k^2}\right)t^2.
$$

The following simple corollary of (2.10) will be sufficient for most of our estimates.

COROLLARY 2.2.a. *Let* $w(k; t, \tau)$ *be given by (2.9), then for* $k \geq k_0(\alpha, L)$, $k_0 > \alpha L + 1$, and $t \leq L$, we have

(2.16)
$$
\int_0^\infty W(k;t,\tau)(t-\tau)^2 e^{\alpha \tau} d\tau \leq M \frac{1}{k},
$$

where M depends on a, L and ko.

PROOF. The expression $(k/k - \alpha t)$ is bounded for $k \ge \alpha t + 1$; $(1 - \alpha t/k)^{-k-1}$ is bounded; and so is a polynomial in t where $t \in [0, L]$; which together imply that (2.15) follows from (2.12) .

544

3. Rate of convergence depending on $w_L(\delta, T(\cdot) f)$.

We shall investigate first the rate of convergence of Phillips' exponential formula.

THEOREM 3.1. Let $T(t)$ be a \mathcal{C}_0 semi-group, then for $0 \le t \le L - \delta$ (δ fixed) *and* $\lambda \geq \lambda_0$ *we have*

$$
(3.1) \quad \Big\| e^{-\lambda t} \sum_{n=0}^{\infty} \frac{(\lambda^2 t)^n}{n!} (R(\lambda; A))^n f - T(t) f \Big\| \leq M(f, L) w_L(\lambda^{-\frac{1}{2}}, T(\cdot) f).
$$

PROOF. Using (1.1) and recalling that for $n \ge 1$, $\lambda \ge \lambda_0$ and $||T(t)|| \le Ke^{\lambda_0 t}$ (which is always satisfied for some λ_0) we have

(3.2)
$$
(R(\lambda; A))^n = \frac{1}{n!} \int_0^\infty e^{-\lambda \tau} \tau^{n-1} T(\tau) d\tau \text{ for } n \ge 1,
$$

while $(R(\lambda; A))^0 = I$. Therefore, we can write for $\lambda > \lambda_0$

$$
(3.3) \quad I(\lambda, t, f) \equiv e^{-\lambda t} \sum_{n=0}^{\infty} \frac{(\lambda^2 t)^n}{n!} (R(\lambda; A))^n f - T(t) f
$$
\n
$$
= e^{-\lambda t} \int_0^{\infty} \sum_{n=1}^{\infty} \frac{(\lambda^2 t)^n}{(n!)^2} \tau^{n-1} e^{-\lambda \tau} [T(\tau) f - T(t) f] d\tau + e^{-\lambda t} [f - T(t) f],
$$

where the change of order of integration and summation is justified for $\lambda > \lambda_0$ by their absolute convergence, and the insertion of $T(t)f$ under integral and sum signs is justified by (2.4) (substituting there $\alpha = 0$). For $0 \le t \le L - \delta$ and $\eta < \delta$ we can write

(3.4)
$$
||T(\tau)f - T(t)f|| \leq w_L(|\tau - t|, T(\cdot)f) \leq (1 + \eta^{-1} |t - \tau|)w_L(\eta, T(\cdot)f)
$$
,
and, therefore, estimate $I(\lambda, t; f)$ as follows:

$$
\|I(\lambda, t, f)\| \leq \left\{e^{-\lambda t} \int_0^L \sum_{n=1}^{\infty} \frac{(\lambda^2 t)^n}{(n!)^2} \left(1 + \frac{|\tau - t|}{\eta}\right) \tau^{n-1} e^{-\lambda \tau} d\tau + e^{-\lambda t} \left(1 + \frac{|t|}{\eta}\right) \right\} w_L(\eta, T(\cdot) f) + e^{-\lambda t} \int_L^{\infty} \sum_{n=1}^{\infty} \frac{(\lambda^2 t)^n}{(n!)^2} (\|T(\tau)f\| + \|T(t)f\|) \tau^{n-1} e^{-\lambda \tau} d\tau.
$$

Using the estimate $\|T(\tau)f\| \leq K \|f\|e^{\lambda_1 \tau}$, the definition and positivity of $K(t, \tau; \lambda)$, and the monotonicity of $\delta^{-2}(t - \tau)^2$ in $L \leq \tau < \infty$, we have

$$
\|I(\lambda, t, f)\| \leq \left\{\int_0^\infty K(t, \tau; \lambda) d\tau + \eta^{-1} \int_0^\infty K(t, \tau; \lambda) |t - \tau| d\tau\right\} w_L(\eta, T(\cdot) f) + \frac{1}{\delta^2} \int_0^\infty K(t, \tau; \lambda) (t - \tau)^2 K \|f\| (e^{\lambda_0 \tau} + e^{\lambda_0 t}) d\tau = I_1 + I_2.
$$

Since (2.8), $\int_{0}^{\infty} K(t,\tau;\lambda)d\tau = 1$, we have, using Cauchy-Schwartz inequality and

$$
(3.5) \qquad \int_0^\infty K(t,\tau;\lambda) \left| t - \tau \right| d\tau \leq \left\{ \int_0^\infty K(t,\tau;\lambda) (t-\tau)^2 d\tau \right\}^{\frac{1}{2}} \leq M^{\frac{1}{2}} \lambda^{-\frac{1}{2}}.
$$

Choosing now $\eta = \lambda^{-\frac{1}{2}}$, we obtain

 $I_1 \leq (1 + \lambda^{\frac{1}{2}} M^{\frac{1}{2}} \lambda^{-\frac{1}{2}}) w_I(\lambda^{-\frac{1}{2}}, T(\cdot) f).$

Corollary 2.1.a and simple properties of the modulus of continuity imply

$$
I_2 \leqq M_1 \frac{1}{\lambda} \leqq M_2 w_L \left(\frac{1}{\lambda} T(\cdot) f\right) \leqq M_2 w_L(\lambda^{-\frac{1}{2}}, T(\cdot) f), f \neq 0.
$$

$$
I_2 = 0 \text{ for } f = 0.
$$

Combining the estimates for I_1 and I_2 , we complete the proof of our theorem.

Our next result will be about the rate of convergence of Widder's Exponential formula.

THEOREM 3.2. Let $T(t)$ be a \mathscr{C}_0 semi-group, then for $k \ge k_0$ and, $0 < t \le L - \delta$, *we have*

$$
(3.6) \qquad \left\| \left(\frac{k}{t} R\left(\frac{k}{t}, A \right) \right) ^{k+1} f - T(t) f \right\| \leq M(\delta, L) w_L(k^{-\frac{1}{2}}, T(\cdot) f).
$$

PROOF. Following (3.2) and $||T(t)|| \leq k e^{\lambda_0 t}$, we have

$$
(3.7) \qquad \left(\frac{k}{t}R\left(\frac{k}{t},A\right)\right)^{k+1}=\left(\frac{k}{t}\right)^{k+1}\cdot\frac{1}{k!}\int_{0}^{\infty}e^{-k\tau}\tau^{k}T(\tau)d\tau,
$$

where the integral converges for $k/t > \lambda_0$ or $k > \lambda_0 t$. Choosing $k_0 > \lambda_0 L + 1$, we can proceed as in the proof of Theorem 3.1., using Lemma 2.2 instead of 2.1. In fact, wherever Eq. $(2,l)$ $(l = 1, \dots, 8)$ is used there, we should us here Eq. $(2,l+8)$ and replace λ by k. Q.E.D.

4. Rate of convergence for $f \in \mathcal{D}(A)$ **.**

In this section the rates of convergence of the exponential formulae (1.2) and (1.3) are related to the modulus of continuity of $(d/dt) T(t) f$. We would not treat connections with the modulus of continuity of higher derivatives, since, as we shall see later, for the formulae treated, the estimates would not improve by more then a naultiplicative constant.

THEOREM 4.1. Let $T(t)$ be a \mathcal{C}_0 semi-group, then if $(d/dt)T(t)f = T(t)Af$ *is continuous, we have for* $0 < t \leq L - \delta$

Vol. 9, 1971

$$
(4.1) \quad \Big\| \, e^{-\lambda t} \sum_{n=0}^{\infty} \frac{(\lambda^2 t)^n}{n!} (R(\lambda; A))^n f - T(t) f \Big\| \leq M_1 \lambda^{-\frac{1}{2}} w_L(\lambda^{-\frac{1}{2}}, T(\,\cdot\,) Af) \quad \lambda > \lambda_0
$$

and

(4.2)
$$
\left\| \left(\frac{k}{t} R\left(\frac{k}{t}; A \right) \right)^{k+1} f - T(t) f \right\| \leq M_2 k^{-\frac{1}{2}} w_L(k^{-\frac{1}{2}}, T(\cdot) A f) \quad k > k_0.
$$

PROOF. If $T(t) \Delta f$ is continuous, we write

$$
T(\tau)f - T(t)f = (\tau - t) \int_0^1 T(t + \zeta(\tau - t)) \, d\tau \, d\zeta
$$
\n
$$
= (\tau - t)T(t) \, df + (\tau - t) \int_0^1 \left[T(t + \zeta(\tau - t)) \, df - T(t) \, df \right] \, d\zeta.
$$

We shall prove (4.1) first. Following (3.3) in the proof of Theorem 3.1 we have for $t \leq L-\delta$

$$
I(\lambda, t, f) = T(t)Af \int_0^{\infty} K(t, \tau; \lambda)(\tau - t) d\tau
$$

+
$$
\int_0^{\infty} K(t, \tau; \lambda)(\lambda - t) \left\{ \int_0^1 [T(t + \zeta(\tau - t))Af - T(t)Af]d\zeta \right\} d\tau \equiv I_1 + I_2.
$$

Using 2.3, we estimate I_1 by

$$
(4.3) \qquad \left\| \, I_{1} \, \right| \,\leq\, \left\| \, T(t) \, \right\| \,\left\| \, A f \, \right\| \cdot \left(\frac{1}{\lambda} + \frac{e^{-\lambda t}}{\lambda} \right) \leq \, 2 \left\| \, T(t) \, \right\| \,\left\| \, A f \, \right\| \cdot \frac{1}{\lambda}.
$$

To estimate I_2 we write

$$
\|I_2\| \leq \int_0^L K(t,\tau;\lambda) |\tau - t| \int_0^1 \|T(t+\zeta(\tau-t))Af - T(t)Af\| d\zeta\} d\tau
$$

+
$$
\int_L^\infty K(t,\tau;\lambda) |\tau - t| \left\{ \|T(t)Af\| + \int_0^1 \|T(t+\zeta(\tau-t))Af\| d\zeta \right\} d\tau
$$

$$
\equiv J_1 + J_2.
$$

To estimate J_1 we estimate first the inner integral

$$
\int_0^1 |T(t + \zeta(\tau - t))Af - T(t)Af|| d\zeta \le \int_0^1 w_L(\zeta |\tau - t|, T(\cdot)Af)d\zeta
$$

\n
$$
\le \int_0^1 w_L(|\tau - t|; T(\cdot)Af)d\zeta = w_L(|\tau - t|; T(\cdot)Af)
$$

\n
$$
\le (1 + \eta^{-1} |\tau - t|)w_L(\eta; T(\cdot)Af).
$$

547

Therefore,

$$
J_1 \leqq \int_0^L K(t, \tau; \lambda) |\tau - t| (1 + \eta^{-1} |\tau - t|) w_L(\eta; T(\cdot) A f) d\tau
$$

\n
$$
\leq w_L(\eta; T(\cdot) A f) \left\{ \int_0^{\infty} K(t, \tau; \lambda) |t - \tau| d\tau + \eta^{-1} \right\}
$$

\n
$$
\times \int_0^{\infty} K(t, \tau; \lambda) (t - \tau)^2 d\tau \right\}.
$$

Choosing $\eta = \lambda^{-\frac{1}{2}}$ and recalling (2.8) and (3.5), we obtain

$$
(4.4) \quad J_1 \leq \left(M^{\frac{1}{2}}\lambda^{-\frac{1}{2}} + \lambda^{\frac{1}{2}}M\frac{1}{\lambda}\right)w_L(\lambda^{-\frac{1}{2}};T(\cdot)Af) \leq K\lambda^{-\frac{1}{2}}w_L(\lambda^{-\frac{1}{2}};T(\cdot)Af).
$$

To estimate J_2 we recall that $\|T(\tau)A f\| \leq \|T(\tau)\| \|A f\| \leq M \|A f\| e^{\lambda_0 t}$ and therefore, we have, using the monotonicity of $|\tau - t|$ for $\tau \in [L, \infty)$ and the positivity of $K(t, \tau, \lambda)$,

$$
J_2 \leqq \int_L^{\infty} K(t,\tau;\lambda) |\tau - t| M \| Af \| (e^{\lambda_0 t} + e^{\lambda_0 (t+\tau)}) d\tau
$$

\n
$$
\leqq M \| Af \| e^{\lambda_0 t} \frac{1}{\delta} \int_L^{\infty} K(t,\tau;\lambda) (\tau - t)^2 (1 + e^{\lambda_0 \tau}) d\tau
$$

\n
$$
\leqq M \| Af \| e^{\lambda_0 L} \frac{1}{\delta} \int_0^{\infty} K(t,\tau;\lambda) (\tau - t)^2 (1 + e^{\lambda_0 \tau}) d\tau \leqq K_2 \cdot \lambda^{-1}
$$

\n
$$
\leqq K_2 \lambda^{-\frac{1}{2}} w_{1,L} (\lambda^{-\frac{1}{2}}, T(\cdot) f).
$$

Combining the above estimates, we complete the proof of (4.1). The proof of (4.2) is analogous using $(2, l + 8)$ wherever $(2, l)$ is used in the above.

5. On the generality of estimates in Sections 3 and 4.

We shall first show that the estimate in Theorem 3.2 is the best possible up to a multiplicative constant. To demonstrate the above, let us consider the example of the Banach space $C_0(-\infty, \infty)$ of bounded continuous functions, which tend to zero as x tends to infinity, and the semi-group $T(t)f(x) = f(t + x)$. We choose $f_1(x) =\begin{cases} 1 - |x| & |x| \leq 1 \\ 0 & \text{otherwise} \end{cases}$, and for this choice obviously $w_L(\delta, T(\cdot) f) = \delta$ (valid for any L). To compute a lower estimate for (3.6) on **the** other hand we estimate

(5.1)
$$
\sup_{x} \left| \left(\frac{k}{t} \right)^{k+1} \frac{1}{k!} \int_{0}^{\infty} e^{-kt/t} f_{1}(x+\tau) d\tau - f_{1}(x+t) \right|.
$$

We justify the statement above if we show for some x the expression in (5.1) is greater then $Kk^{-\frac{1}{2}}$, where $K > 0$ is independent of k. Choosing $x = -1$, $t = 1$, and $0 < \delta < 1$, we have

$$
(k)^{k+1} \frac{1}{k!} \int_0^\infty e^{-k\tau} \tau^k [f_1(\tau - 1) - f_1(0)] d\tau = I_1 + I_2
$$

where I_1 and I_2 are integrals on $|\tau-1|\leq \delta$, and $|\tau-1| > \delta$ respectively. For $|\tau| \leq \delta$ $f_1(\tau - 1) - f_1(0) = -|\tau - 1|$, and, therefore,

$$
\left|I_1\right| = k^{k+1} \frac{1}{k!} \int_{|1-\tau| \leq \delta} e^{-k\tau} \tau^k \left|\tau - 1\right| d\tau.
$$

Using Theorem 4.3 of [5] and especially (13.3) there, we obtain for $a_k = 0$, $g(k) = k$, $\lambda = 0$, and $h(x)$ being $h(\tau)$ here and $h(\tau) = -\tau + \log \tau$, $a = 1$, $b = 1 + \delta$, the estimate

$$
k^{\frac{1}{2}}\cdot k^{k+1}\frac{1}{k!}\int_1^{1+\delta}e^{-kt}\tau^k(\tau-1)d\tau \sim A>0 \quad k\to\infty.
$$

A similar estimate is valid for $\int_{1-\delta}^{1}$ and, therefore, $|I_1| \geq K'k^{-\frac{1}{2}}$ for $k \geq k_0$. I_2 can be estimated by (2.15)

$$
\left|I_2\right| \leqq \int_{\substack{|1-\tau|\geq \delta\\ \tau \geq 0}} W(k; 1, \tau) d\tau \leqq \frac{1}{\delta^2} \int_0^{\tau} (1-\tau)^2 W(k; 1, \tau) d\tau \leqq \frac{1}{\delta^2} \left(\frac{1}{k} + \frac{2}{k^2}\right)
$$

But

$$
\left|k^{k+1} \frac{1}{k!} \int_0^\infty e^{-k\tau} \tau^k [f_1(\tau-1) - f_1(0)] d\tau \right| \geq |I_1| - |I_2|,
$$

which completes the proof that the expression in (5.1) is greater than $Kk^{-\frac{1}{2}}$.

To show that the result of Theorem 3.1 is also best possible we use the same space, semi-group and function as in the above. We have to show that

$$
(5.2) \qquad \int_{|\tau-1| \leq \delta} K(1,\tau,\lambda) \big| \tau - 1 \big| d\tau \geq c\lambda^{-\frac{1}{2}} \text{ for some } c > 0 \lambda \geq \lambda_0.
$$

Following calculations in Lemma 2.1 we obtain after messy derivations of $\int_{0}^{\infty} K(t, \tau, \lambda) \tau^{i} d\tau$ $i = 0, 1, 2, 3, 4$

$$
(5.3)\int_0^\infty K(t,\tau,\lambda)(t-\tau)^4 d\tau = \frac{12t^2}{\lambda^2} + \frac{72t}{\lambda^3} + \frac{24}{\lambda^4} + e^{-\lambda t} \left(\frac{4t^3}{\lambda} - \frac{12t^2}{\lambda^2} + \frac{24t}{\lambda^3} - \frac{24}{\lambda^4}\right).
$$

In particular $\int_0^\infty K(1, \tau, \lambda)(1 - \tau)^4 d\tau = (12/\lambda^2) + o(1/\lambda^2)$.

Using (2.7) and Cauchy-Schwartz's inequality we have

$$
\frac{2}{\lambda} + o\left(\frac{1}{\lambda}\right) = \int_0^\infty K(1, \tau, \lambda)(1 - \tau)^2 d\tau
$$
\n
$$
\leq \left\{ \int_0^\infty K(1, \tau, \lambda) \left| 1 - \tau \right|^3 d\tau \right\}^{\frac{1}{2}} \left\{ \int_0^\infty K(1, \tau, \lambda) \left| 1 - \tau \right| d\tau \right\}^{\frac{1}{2}}
$$
\n
$$
\leq \left\{ \int_0^\infty K(1, \tau, \lambda) \left| 1 - \tau \right|^4 d\tau \right\}^{\frac{1}{2}} \left\{ \int_0^\infty K(1, \tau, \lambda) \left| 1 - \tau \right|^2 d\tau \right\}^{\frac{1}{2}}
$$
\n
$$
\times \left\{ \int_0^\infty K(1, \tau, \lambda) \left| 1 - \tau \right| d\tau \right\}^{\frac{1}{2}}
$$

which implies

$$
\left\{\int_0^\infty K(1,\tau,\lambda) \left|1-\tau\right| d\tau\right\}^{\frac{1}{2}} \geq \left(\frac{2}{\lambda}+o\left(\frac{1}{\lambda}\right)\right) \left(\frac{12}{\lambda^2}+o\left(\frac{1}{\lambda^2}\right)\right)^{-\frac{1}{4}} \cdot \left(\frac{2}{\lambda}+o\left(\frac{1}{\lambda}\right)\right)^{-\frac{1}{4}}
$$

$$
= \frac{2}{\sqrt[4]{24}} \frac{1}{\lambda^{\frac{1}{4}}}+o\left(\frac{1}{\lambda^{\frac{1}{4}}}\right) \qquad \lambda \to \infty
$$
or
$$
\int_0^\infty K(1,\tau,\lambda) \left|1-\tau\right| d\tau \geq \frac{2}{\sqrt{6}} \frac{1}{\lambda^{\frac{1}{2}}}+o\left(\frac{1}{\lambda^{\frac{1}{2}}}\right) \qquad \lambda \to \infty.
$$

Since

$$
\int_{|1-\tau|\geq \delta} K(1,\tau,\lambda) |1-\tau| d\tau \leq \frac{1}{\delta} \int_{|1-\tau|\geq \delta} K(1,\tau,\lambda) (1-\tau)^2 d\tau
$$

$$
\leq \frac{1}{\delta} \int_0^\infty K(1,\tau,\lambda) (1-\tau)^2 d\tau
$$

$$
= \frac{1}{\delta} \left[\frac{2}{\lambda} + o\left(\frac{1}{\lambda}\right) \right] \qquad \lambda \to \infty
$$

we can easily conclude the proof of (5.2).

We shall show now that if in Theorem 4.1 we assumed the existence and continuity of all derivatives of $T(t)f$, we would not improve our estimate.

Let us treat the Banach space of continuous functions in $[0, \infty)$, satisfying $\lim_{x\to\infty}e^{-x}f(x)=0$, with the norm $||f|| = \sup |e^{-x}f(x)|$, and let $T(t)f(x)$ $=f(x + t)$. Choosing now $f_1(x) = x^2$, obviously $T(t)f_1$ has all derivatives. Using the lemmas of Section 2 and Theorem 4.1, we get

$$
I(\lambda) = \| e^{-\lambda t} \sum_{n=0}^{\infty} \frac{(\lambda^2 t)^n}{n!} R(\lambda; A)^n f_1 - T(t) f_1 \|
$$

=
$$
\sup_{x} | e^{-\lambda t} \int_0^{\infty} \sum_{n=1}^{\infty} \frac{(\lambda^2 t)^n}{(n!)^2} \tau^{n-1} [(\tau + x)^2 - (t + x)^2] d\tau
$$

+
$$
e^{-\lambda t} [x^2 - (t + x)^2] |.
$$

Let us choose $x = 1$, then we have by (2.4), (2.5) and (2.6)

$$
\begin{aligned} \left| I(\lambda) \right| &\geq \int_0^\infty K(t, \tau, \lambda) \left[(\tau^2 - t^2) + 2(\tau - t) \right] d\tau \\ &= \frac{4t}{\lambda} + \frac{2}{\lambda^2} - \frac{2e^{-t}}{\lambda^2} + 2 \left[\frac{1}{\lambda} - \frac{e^{-\lambda t}}{\lambda} \right] \geq \frac{4t}{\lambda} . \end{aligned}
$$

Similarly and using the same example, we show that (4.2) cannot be improved :

$$
I(k) = \| \left(\frac{k}{t} \right) R \left(\frac{k}{t} ; A \right) ^{k+1} f_1 - T(t) f_1 \|
$$

= $\sup_{x} | \int_0^{\infty} W(k, t, \tau) ((\tau + x)^2 - (t + x)^2) d\tau |.$

Choosing $x = 1$ and using (2.12), (2.13) and (2.14), we obtain

$$
I(k) = \int_0^\infty W(k; t, \tau)(\tau^2 - t^2) + 2(\tau - t))d\tau
$$

= $t^2 \left(\frac{(k+1)(k+2)}{k^2} - 1 \right) + 2t \left(\frac{k+1}{k} - 1 \right) = t^2 \frac{3}{k} + \frac{2t}{k} + \frac{2t^2}{k^2} \ge \frac{2t}{k}.$

6. Remarks, generalizations and corollaries

In this section we make a few remarks that enable us to generalize somewhat theorems of former sections.

REMARK 6.1. The modulus of continuity $w_L(\delta, T(\cdot) f)$ depends on the modulus of continuity in $(0, \eta] w_n(\delta, \tau(\cdot) f), \eta > \delta$, since

$$
(6.1) \quad w_L(\delta; T(\cdot)f) \leq \sup_{t \leq L-\eta} \|T(t)\| w_{\eta}(\delta; T(\cdot)f) \leq Me^{\alpha(L-\eta)} w_{\eta}(\delta; T(\cdot)f).
$$

Therefore, in Theorems 3.1 and 3.2 the rate of convergence could be estimated by $K(\eta)w_n(\lambda^{-\frac{1}{2}}; T(\cdot)f)$ and $M(\eta)w_n(k^{-\frac{1}{2}}; T(\cdot)f)$ respectively. However, since (6.1) in many cases is far from being best possible, we may have a worse estimate using it instead of $w_L(\delta; T(\cdot) f)$.

552 z. DITZIAN

REMARK 6.2. Following remark 6.1, we can also estimate $w_L(\delta; T(\cdot)Af)$ by $w_n(\delta, T(\cdot)Af)$ $\eta > \delta$ following the above

(6.2)
$$
w_{L}(\delta; T(\cdot)Af) \leq Me^{\alpha(L-\eta)}w_{\eta}(\delta; T(\cdot)Af,
$$

and therefore can give the estimates of Theorem 4.1 in terms of

 $\lambda^{-\frac{1}{2}}w(\lambda^{-\frac{1}{2}};T;T(\cdot) \Lambda f).$

REMARK 6.3. It may be useful on some occasions to consider the modulus of continuity in $[a, b]$, instead of $(0, L)$, denoted by

(6.3) $w(\delta; T(\cdot) f, [a, b]) = \sup\{\|T(t_1)f - T(t_2)f\|; |t_1 - t_2| < \delta, a \leq t_1, t_2 \leq b\}.$

We can observe easily a difference if we consider the semi-group of left translations on continuous functions on $[0, \infty)$, such that

$$
||f|| = \sup_{x \ge 0} |e^{-x}f(x)|, \text{ and consider } f_1(x) = \begin{cases} 0 & 0 \le x \le 1 \\ (x-1)^x & 1 < x < \infty \end{cases}
$$

 $w(\delta; T(\cdot) f_1) > \delta^{\alpha}$ while $w(\delta; T(\cdot) f_1, [2, 3]) < K \cdot \delta$. With slight modifications in the proof we have, instead of Theorems 3.1 and 3.2, for $t \in [a + \eta, b - \eta]$

$$
(6.5) \qquad \Big\| e^{-\lambda t} \sum_{h=0}^{\infty} \frac{(\lambda^2 t)^n}{n!} (R(\lambda; A))^n f - T(t) f \Big\| \leq M w^{-\frac{1}{2}}, T(\cdot) f, [a, b]),
$$

and

(6.6)
$$
\left\|\left(\frac{k}{t}R\left(\frac{k}{t};A\right)\right)^{k+1}f-T(t)f\right\|\leq Mw(k^{-\frac{1}{2}},T(\cdot)f,[a,b]),
$$

where *M* depends on *f*, on [a, b], and on the estimate $||T(t)|| \leq Ke^{\alpha t}$.

REMARK 6.4. Similar modifications to those mentioned in Remark 6.3 about taking the modulus of continuity only on $[a, b]$, can be applied in Theorem 4.1 to the modulus of continuity of $(d/dt)T(t)$. In fact, $T(t)f$ does not necessarily have a derivative in $(0, a]$ or $f \notin \mathcal{D}(A)$ but $T(a)f \in A$. We shall obtain for $t\in[a+\eta,b-\eta]$

$$
(6.7) \qquad \left\| \left(\frac{k}{t} R\left(\frac{k}{t}; A \right) \right) \right\|^{k+1} f - T(t) f \right\| \leq Mk^{-\frac{1}{2}} w_{b-a}(k^{-\frac{1}{2}}, \tau(\ \cdot \)AT(a) f),
$$

and corresponding formula for the Phillips exponential formula.

REFERENCES

1. P. L. Butzer and H. Berens, *Semi-group of operators and approximation*, *Springer-Verlag*, 1967.

2. Z. Ditzian, *On Hillefirst exponentialformula,* Proc. Amer. Math. Soc. 22 (1969), 351-355.

3. Z. Ditzian, *Note on Hille's exponential formula,* Proc. Amer. Math. Soc. 23 (1970).

4. Z. Ditzian. *On rate of convergence of exponential formula.* (To appear in Bul. Inst. Polytechn.)

5. Z. Ditzian and A. Jakimovski, *Real inversion and jump formulae for the Laplace transform,* (Part I), Israel J. Math. 1 (1963), 85-104.

6. E. Hille and R. S. Phillips, *Functional analysis and semi-groups,* Amer. Math. Soc. Colloquium Publ. Vol. XXXI, 1957.

7. L. C. Hsu, *An estimation for the first exponential formula in the theory of semi-groups of linear operations,* Czechoslovak Math. J. 10 (1960), 323-328.

8. R. S. Phillips, *An inversion formula and semi-groups of linear operators,* Ann. of Math. 59 (1954), 325-356.

9. D. V. Widder, *The Laplace transform* Princeton Univ. Press, 1943.

UNIVERSITY OF ALBERTA EDMONTON, ALBERTA